
	

	

	

Generating Cyclo-Static Dataflow Graphs
from Lift for FPGA Programming

Hebe Hilhorst

Capstone Final Report for BSc (Honours) in

Mathematical, Computational and Statistical Sciences

Supervised by: Bruno Bodin

AY 2019/2020

	

	

	

ii

i

YALE-NUS COLLEGE

Abstract
Department of Mathematical, Computational and Statistical Sciences

B.Sc (Hons)

Generating Synchronous Dataflow Graphs from Lift for FPGA

programming

by Hebe HILHORST

Parallel computing is increasingly necessary for high-performance pro-

gramming, but can be difficult to successfully implement. Lift is an ex-

citing new high-level language designed to make it easier to code perfor-

mant and error-free parallel programs. However, performance portabil-

ity requires separate compilers to make Lift accessible to different hard-

ware platforms. This paper proposes a novel approach for generating

parallel FPGA code from Lift programs using Cyclostatic Dataflow Graphs

(CSDFs) as an intermediate representation. It tests this design in practice

with the implementation of an automatic generator for creating CSDFs

from Lift programs, allowing for preemptive analysis and scheduling op-

timizations. CSDFs for common operations are generated, and different

optimizations tested and analyzed. Future work may demonstrate the

creation of efficient FPGA programs from this basis.

HTTPS://WWW.YALE-NUS.EDU.SG/

ii

Contents

Abstract i

1 Introduction 1

1.1 Motivation . 1

1.1.1 Parallelism: An attractive difficulty 1

1.1.2 In this work . 3

1.2 Context . 3

1.2.1 World as it stands: Parallel Programming Models . 3

1.2.2 Parallel Hardware 4

1.2.3 Optimization . 6

2 Background Information 7

2.1 Lift: Making parallel programs performance portable . . . 7

2.1.1 Structure . 7

2.1.2 Rewrite Rules . 10

2.2 Cyclo-Static Dataflow Graphs 11

2.3 Description . 11

2.4 Fit for Model . 13

3 Methods 14

3.1 Design Principles . 15

3.1.1 Modular Design . 15

iii

3.1.2 Dataflow . 17

3.1.3 Optimization and Analysis 18

3.2 CSDF Construction . 18

3.2.1 Parser . 18

3.2.2 Type Inference . 20

3.2.3 CSDF Generation . 21

3.3 Optimizations . 24

4 Results 25

4.1 Sample . 25

4.2 Coverage . 26

4.2.1 Impossibilities . 26

4.2.2 Future Improvements 27

4.3 Analysis . 27

4.3.1 Inaccuracies . 28

4.3.2 Default CSDF . 28

4.4 Rewrite Rule Optimizations 28

4.4.1 Join/Split Cancellation Rules 29

4.4.2 Reorder Rules . 30

4.4.3 Split-Join Rule: Parallel Map 30

4.5 CSDF-specific improvements 34

4.5.1 To Array Or Not To Array 34

4.5.2 Reduce . 36

5 Conclusion 39

5.1 Artifacts . 40

5.1.1 Lift Project . 40

iv

5.1.2 CSDF Generator . 40

Bibliography 41

v

List of Figures

2.1 An overview of the Lift framework, from (Steuwer et al.,

2015) . 8

2.2 Lift’s algorithmic rewrite rules, from Steuwer et al., 2015 . 11

3.1 The Join function CSDF representation. 16

3.2 Different representations of the dot program. 19

3.3 How a CSDF representation of the Map function is gener-

ated from the AST. 23

4.1 Percentage of programs from which CSDF representations

were successfully generated. 26

4.2 Example functions using cancellation rules 29

4.3 The Lift HLL asum program. 30

4.4 Illustration of different CSDF representations of the scalar-

vector addition program. 31

4.5 Time taken to generate CSDF for scalar-vector addition,

parallel implementation of Map compared to the default. . . 31

4.6 MMNN CSDF execution time with Map implemented in

parallel, relative to the naive execution. 32

4.7 Effect of core restriction on parallel Map 33

4.8 The Map Fusion Rule CSDF equivalence. 34

vi

4.9 Speed improvement caused by de-arrayification applied to

the parallel-map and naive versions of the dot function. . . 35

4.10 Different ways Reduce can be represented as a CSDF sub-

graph. 37

4.11 Speed improvement to dot function with different levels of

parallelization. 37

1

Chapter 1

Introduction

This work outlines the first step towards producing a compiler for FPGA

code from the Lift high-level language (HLL). It explains how paralleliz-

able Cyclo-Static Dataflow Graphs (CSDFs) are generated, and details the

optimizations and analysis performed on CSDFs to date.

1.1 Motivation

1.1.1 Parallelism: An attractive difficulty

When it comes to computing, faster is better. Luckily, computing power

has continuously increased over the past decades in accordance with

Moore’s Law for single core performance. Unfortunately, Wirth’s less

well known law - that software gets slower more quickly than hardware

gets faster - has also held true. In addition, there is significant specula-

tion that the physical limits of Moore’s law have been reached, at least

until quantum computing becomes commercially viable (Khan, Houn-

shell, and Fuchs, 2018).

Parallelism has emerged as a major driver of high-performance com-

puting. Multi-core devices have become ubiquitous, in everything from

Chapter 1. Introduction 2

servers to mobile phones. At the immediate level, this allows for multi-

ple applications to be run at once. More interestingly, it means that one

program can run multiple tasks in parallel. Parallel computing architec-

tures are gaining significant traction. As well as being faster, parallelism

generally allows for simpler design and better hardware and energy ef-

ficiency (Asanović et al., 2006, Chandrakasan, Sheng, and Brodersen,

1992). Admittedly, some use-cases are better suited that others. As Am-

dahl’s law dictates, the efficiency of parallelizing a program is limited by

the percentage that has to be executed sequentially (Amdahl, 1967). Data

heavy applications, particularly mathematical and scientific analysis in-

volving matrix manipulations, are particularly appropriate (Asanović et

al., 2006). However, parallel computing is a promising avenue for im-

proving performance across a range of applications.

This introduces new issues. Efficient, bug-free parallel programs are

challenging to code (Asanovic et al., 2009). Many programmers struggle

to adapt. Concurrent code is "notoriously difficult" to competently pro-

duce due to a combination of complexity, tricky resource management

and a lack of overarching methodology (Darlington et al., 1993). High-

level functional programming attempts to address this by introducing

strong abstractions and implicit parallelism.

A further complication is introduced by hardware specialization. Dif-

ferent devices implement parallelism in vastly different ways, from multi-

core CPUs and parallel GPUs to the focus of this paper, Field Programmable

Gate Arrays (FPGAs). The mechanics of parallelism are fundamentally

platform specific. The efficiency of different hardware also varies. High-

level languages need platform-specific compilers to enable portability,

Chapter 1. Introduction 3

specifically tailored to maintain performance.

In summary, performant parallel code is an attractive way to increase

computing performance. Unfortunately, it’s difficult to write and not

very performance portable across hardware platforms. Targeted func-

tional languages help with the first issue, but require optimized compil-

ers to resolve the second.

1.1.2 In this work

This work describes the first stage in writing an optimized compiler for

the Lift parallel computing framework, targeting FPGAs. It explains how

CSDFs are generated from Lift HLL code. It then details different opti-

mizations that are experimented with, and the effect they have on pro-

jected performance.

1.2 Context

There are three key elements here: a user-facing high-level language (pro-

vided by Lift), a parallel hardware platform (FPGA) and an intermediate

representation suited to optimization (CSDF).

1.2.1 World as it stands: Parallel Programming Models

Currently, there are three dominant parallel programming models: shared

memory (OpenMP), message passing (MPI) and functional programming

(MapReduce). Of these, the first two focus on managing information

shared between systems running in parallel. Functional programming, in

Chapter 1. Introduction 4

contrast, prevents parallel threads from overwriting each other’s mem-

ory by making all data immutable. The lack of side effects makes de-

composition easy. Functional programs makes it easier to delegate par-

allelization to the compiler and runtime environment instead of the pro-

grammer, since the delineation between parallelizable parts and critical

sections can be inferred from dataflow (Hammond, 2011). The functional

paradigm carries great promise for parallel programming.

Of the various functional programming frameworks, this paper is fo-

cused on Lift. Lift is a new research framework intended to tackle the

problem of performance portability across parallel architectures (Steuwer

et al., 2015). Unlike many classic functional languages, it has been de-

signed specifically to take advantage of parallelism. While there are sev-

eral other new languages that try to do the same, Lift is distinct for a few

reasons, discussed in depth in section 2.1, which make it ideal for highly

data-parallel array operations.

1.2.2 Parallel Hardware

Hardware is often a trade-off between flexibility and efficiency, particu-

larly when it comes to parallel programming. On one end of the spec-

trum is the CPU, that jack of all trades and master of none. At the other

is Application Specific Integrated Circuits (ASICs), tailored to be very

good at one application and no more. In between these two extremes

you have GPUs and FPGAs. GPUs are closer to CPUs, with greatly im-

proved parallelization abilities, but with priority also given to ease of

programming. FPGAs are reconfigurable integrated circuits. They have

similar efficiency improvements to ASICs, but are programmable. They

Chapter 1. Introduction 5

are specifically good for parallel programming, due to their origin as dig-

ital signal processors (Research, 2019). A performant parallel program-

ming language like Lift will benefit from being extended to FPGAs.

Unfortunately, FPGAs are notoriously difficult to work with (Darling-

ton et al., 1993). Programming is challenging, more akin to circuit design

than modern code (Fine Licht, Blott, and Hoefler, 2018). Code compila-

tion (more exactly, feature synthesis and implementation) takes a signifi-

cant amount of time - often longer than it took to write the code. Speedup

is generally only achieved at the cost of quality (Mulpuri and Hauck,

2001). FPGAs offer many desirable features, but are not approachable for

the novice programmer. This makes an optimized compiler all the more

desirable.

Several projects already tackle the painful coding process through

High Level Synthesis (HLS). This is the process of taking a higher ab-

straction of the program and converting it to Verilog, a low level hard-

ware description language (HDL) for programming FPGAs. Of the ex-

isting 80+ HLS systems, most use C or C++ as the source language, with

others using MATLAB, Java and Python (Nane et al., 2015). However,

these can still be challenging to engage with. Few properly abstract away

all hardware concerns. Chisel, the only Scala-based project, feels like a

re-implementation of the HDL in Scala (Bachrach et al., 2012). While

OpenCL can be compatible with FPGAs, it generally has very poor per-

formance. A Lift to Verilog compiler would allow programmers to code

without any consideration at all for the hardware, meaning that a pro-

gram initially written for a GPU could be easily run on a FPGA with no

adjustments. This is an extreme level of portability. The difficulty is in

Chapter 1. Introduction 6

ensuring that performance is equally portable.

This is the problem that this work addresses, by examining how the

CSDF intermediate representation can be used for optimization.

1.2.3 Optimization

This brings us to the issue of optimization. Lift’s Rewrite Rules (subsec-

tion 2.1.2) provide one avenue to exploit. There is also a lot of opportu-

nity for FPGA-specific improvement. The existing HLS tools mentioned

above give a lot of good examples. Most include improvements like oper-

ations chaining and augmented scheduling, as well as bitwidth, memory,

loop and spatial parallelism optimisation. To both implement and ana-

lyze this, most use some form of dataflow-based intermediate represen-

tation (Stewart et al., 2017). In particular, Cyclo-Static DataFlow Graphs

(CSDFs) are very popular (Vlugt et al., 2019, “Advanced Model-Based

FPGA Accelerator Design” 2017, Aubry et al., 2013).

CSDFs are good intermediate representations for FPGAs, since both

exemplify the pipe-based dataflow model. Further, CSDFs have several

algorithms available for scheduling improvement, which is a key optimi-

sation for FPGA code (Bodin, Munier-Kordon, and Dinechin, 2013). They

also allow you to model and adjust programs before loading them into

the FPGA, which helps with iterative developments.CSDFs are a good fit

for Lift, preserving its functional nature. Overall, CSDFs have proven to

be an excellent vehicle for optimizing FPGA code.

7

Chapter 2

Background Information

2.1 Lift: Making parallel programs performance

portable

Lift is still in development, changing over time. The key features have

already been discussed: it’s functional, array-specific and parallel. To

build a compiler, deeper knowledge is necessary.

2.1.1 Structure

There are three major elements to Lift, as seen in Figure 2.1. The first is

a functional, high-level language. This is pretty straightforward to use

for anyone familiar with other functional languages like Haskell or Lisp.

It is restricted to algebraic datatypes and provides six core algorithmic

functions, although it also allows for user-defined methods. The second

is a collection of rewrite rules, which gives a selection of ways to manipu-

late the algorithmic primitives while maintaining semantic equality. This

gives a range of possibilities for optimization. The third is a generator for

OpenCL code, targeted at a specific GPU or CPU hardware.

Chapter 2. Background Information 8

FIGURE 2.1: An overview of the Lift framework, from
(Steuwer et al., 2015)

Algorithmic Primitives

Lift’s high-level language is based on an extension of the Map-Reduce

functional pattern to include further array manipulations, such as Zip,

Split and Join. Different articles from the Lift project introduce other

primitives as well, with varying behaviour (Steuwer et al., 2015, Steuwer,

Remmelg, and Dubach, 2017). While we initially developed the theory

for our optimizations based on this research, this ran into some conflict

with the reality of the project codebase. As is understandable for an early-

stage project, the Lift codebase,documentation, and academic representa-

tion (Steuwer et al., 2015, Steuwer, Remmelg, and Dubach, 2017) diverge

in significant points. For the sake of consistency, the work in this paper

was built with the Lift codebase at commit hash 5e8a18df as the source

of truth, represented in Equation 2.1.

https://github.com/lift-project/lift
https://lift-project.readthedocs.io/en/latest/getting-started/index.html

Chapter 2. Background Information 9

zipA,B,I : [A]I → [B]I → [A× B]I

getA,I : [A× B]→ I → A

splitA,I : (n : size)→ [A]n×I → [[A]n]I

joinA,I,J : [[A]I]J → [A]I×J

mapA,B,I : (A→ B)→ [A]I → [B]I

reduceA,I : ((A× A)→ A)→ A→ [A]I → [A]1

(2.1)

Lift also allows for extra user-defined functions to be written in OpenCL.

This works for the initial structure, since the user functions can be easily

incorporated into the OpenCL code generated by Lift. It works less well

for this project, since OpenCL is not a Domain-Specific Language (DSL)

for FPGAs. We settled for incorporating the multiply and add operations

into our generator at the same level as native Lift primitives.

Types

Only algebraic types are available in Lift, although the base int and

float can be extended into tuples and arrays (of various depths). The

two base types are float and int. Then there are two collection types:

you can have an array of I elements of the same type, of a tuple of two

elements of any type - the same, or different. These can be built on each

other, such that you can have an array of tuples, where the first element

of each tuple is a multi-dimensional array of int and the second is a

float. While this is comparatively limited, it suffices for most programs

suited to parallelism such as graphics rendering, scientific computing

and mathematical analysis. The simple structure also makes building

Chapter 2. Background Information 10

a CSDF generator easier, and optimizations are easier to prove without

possible complications from edge-cases.

2.1.2 Rewrite Rules

Since Lift is formed from a few clearly defined mathematical formulae,

there are several options for transforming one expression into a different

but semantically-equivalent one, which may be more efficient for par-

allelism. For instance, sequential Map calls can be composed into one.

The Lift development community has developed several rewrite rules al-

ready, reproduced in Figure 2.2. These are of two classes: algorithmic

and OpenCL-specific. Algorithmic rules transform an expression formed

from high-level primitives into a semantically equivalent expression, also

of high-level primitives. The OpenCL specific rules transform high-level

expressions into ones that contain functions like splitVec, which are ex-

plicitly targeted at OpenCL. FPGAs don’t use OpenCL, so this second

class is not relevant. However, the algorithmic rewrite rules have poten-

tial.

These rules are useful because different semantically equivalent ex-

pressions may not be equally parallelizable. In the work so far, they have

come in most useful for optimizing storage and memory access (Steuwer

et al., 2015). Not all continue to be relevant; rewrite rules in the literature

sometimes make use of primitives that didn’t stick around. However,

since the hardware organisation of FPGAs and GPUs is significantly dif-

ferent, the optimal rewrite rules are also likely to be different. Part of this

Capstone is focused on empirically showing which are best suited for the

FPGA platform.

Chapter 2. Background Information 11

FIGURE 2.2: Lift’s algorithmic rewrite rules, from Steuwer
et al., 2015

2.2 Cyclo-Static Dataflow Graphs

Interestingly, CSDF graphs were also originally designed for signal pro-

cessing, which goes some way to explaining why they’re such a good fit

for FPGA programming. The way they handle dataflow and scheduling

is very similar.

2.3 Description

CSDFs follow the flow of data through a series of operations. Each node

represents a side-effect free function. Each edge represents a data buffer.

This is a directed graph; the source node of an edge feeds data into the

buffer, while the destination removes and processes it. At each end of

the buffer is a port; the input port connecting it to the producer node

Chapter 2. Background Information 12

(A) A very simple representation of
an CSDF graph

(B) A very simple representation of
an CSDF graph, with phases

and the output port connecting it to the consumer node. Each node pro-

duces/consumes a certain amount of data each time it’s executed, with

this number annotated at the appropriate end of the connecting edge,

representing the port. For instance, in Figure 2.3a node A produces 2 da-

tum with every execution, while B consumes 3. While data follows the

flow of the graph, time does not. Any node can execute at any time, so

long as there is enough data in its input buffers. Scheduling the execution

order of nodes is very important. For instance, in Figure 2.3a A must be

executed at least twice before B can be, since after the first execution there

will only be 2 datum in the buffer, and B requires 3. In larger systems, this

is more complicated (Bodin, Munier-Kordon, and Dinechin, 2013).

While this covers the general idea of a dataflow graph, there are three

other important additions. First is a delay. A delay refers to data preloaded

into the buffer when the system is started. In Figure 2.3a a delay of 1 on

the edge would mean that B could run straight after A’s first executions,

since there would be 1 + 2 = 3 datum in the buffer. A delay makes possible

another feature: self-reflexive edges. These allow nodes to feed data back

to themselves. Finally, a key element to CSDFs is that nodes can cycle

through phases. In other words, they can produce/consume a different

number of data depending on the phase. In the modified CSDF graph in

Figure 2.3b, node A has three phases while node B has two. The first time

A fires, it produces 2 datum, and again on the second. The third time, it

Chapter 2. Background Information 13

produces 3 datum, before cycling back to the start of the phase vector to

produce 2 datum in the next execution. Meanwhile, B alternates between

consuming 3 and 1 datum. An excellent explanation of this can be found

in Bodin, Munier-Kordon, and Dinechin, 2013.

2.4 Fit for Model

CSDF graphs are an excellent fit for our project. Since both CSDF and

FPGAs were designed for signal processing, they are a strong match for

modelling FPGA code, because the assumptions and general architec-

tural model are the same. For instance, key elements of both are vari-

able schedule and clock time. They are functional like Lift, and different

rewrite rules can be modelled as differently arranged CSDF graphs. This

allows for testing using a CSDF-specific analysis tool like Kiter (Bodin,

Munier-Kordon, and Dinechin, 2016). These tools also include algorithms

for finding the best schedule, and as previously mentioned, scheduling is

an immediate avenue for optimization of FPGA code. CSDF graphs are

an excellent intermediate representation, retaining a strong structure for

easy compilation while allowing for deeper analysis and scheduling.

14

Chapter 3

Methods

CSDF graph generation is a multi-step process. A high-level Lift pro-

gram is first parsed to create an abstract syntax tree (AST) representation.

Data-type and length information is then cascaded down from the initial

input values to populate every Node in the AST. A CSDF representation

can then be created. This work provides several different methods of

producing a CSDF representation, and an analysis of which methods of

optimization succeeded best.

CSDFs are generated directly from high-level Lift code. This work in-

cludes a lexer/parser suite that produces a tailored AST, which is used

to generate and optimize a CSDF representation. Finally, datatype and

buffer information are derived, for later use in the FPGA code. Initial

plans were to generate the CSDF directly from the internal Lift AST. Un-

fortunately, this did not retain all the data necessary for FPGA program-

ming, meaning that a tailored parser was necessary.

Chapter 3. Methods 15

3.1 Design Principles

3.1.1 Modular Design

When converting Lift HLL code into a CSDF graph, each Lift primitive

is treated as a discrete unit. A CSDF graph comprises of a list of Nodes

and Channels. A Node contains input and outpur Ports, connected other

Nodes by a Channel. Each primitive is compiled into a CSDF Node or sub-

graph, with incoming and outgoing Ports. Figure 3.1 gives an insight

into how this works for the Join Node. This strategy prioritizes modular-

ity. To build the graph, only the input and output Ports associated with

each Node must be known. These components are then linked together

by appropriate Channels to form a complete CSDF graph that accurately

represents the original program. The design of each primitive can be eas-

ily updated, so long as the input and output Ports remain the same. This

makes CSDF-based optimizations easier, since different representations

of each primitive can be tested without disturbing the graph as a whole.

This modularity also encompasses higher-order functions, like Map

and Reduce. Operations like Zip perform the same operation every time,

parameterized only by integer length variables. In contrast, higher or-

der functions depend on an input function. That might be a user-defined

function or it might be an expression containing several Lift primitives.

In the creation of a CSDF from Lift, that means these functions actually

translate to CSDF sub-graphs. However, the interface exposed to the rest

of the CSDF (the input and output Ports of the Map or Reduce subgraph) is

kept constant. This means the design of these higher-order functions can

be experimented with in isolation. The focus on modular design allows

Chapter 3. Methods 16

class Channel:
def __init__ (self, src_act, dst_act, src, dst, init_token = 0):

self.name = src+"_to_"+dst
self.src_port = src
self.src_act = src_act
self.dst_port = dst
self.dst_act = dst_act
self.init_token = init_token
self.datatype = False # set at the type inference stage

class Port:
def __init__ (self, direction, name, rate):

self.name = name
self.direction = direction
self.rate = rate

class Join(CSDFNode):
def __init__(self, name, count):

self.name = name
self.input = Port('in', name + '_in', [count])
self.output = Port('out', name + '_out', [1])

A. Class definition of Channels, Ports, and the Join Node.

B. A graphical representation of the Join function as a CSDF Node.

FIGURE 3.1: The Join function CSDF representation.

Chapter 3. Methods 17

for different optimization to be easily implemented at the CSDF design

level.

3.1.2 Dataflow

Dataflow is vital to dataflow diagrams, so inferring and tracking data

type and size throughout a Lift program is vital to building the subse-

quent CSDF. This is prioritized at all stages of the CSDF generation pro-

cess. Lift is a strongly typed language and all primitives behave in a pre-

dictable manner, which makes things easier. Type inference is performed

at an early stage and information is retained throughout the process.

Data information is important for several reasons. Some of the infor-

mation is necessary to construct the CSDF topology. For instance, array

length dictates how many instances of a Reduce subgraph are necessary.

Type information is also vital for informing both buffer size and phase

count. This is important for CSDF design and accurate analysis. Ac-

curate CSDF analysis is vital for optimization decisions. Buffer size in-

formation in particular will be necessary for the end goal of producing

efficient FPGA programs. Type information is also helpful for compile

time checking.

This requires an addition to the notation. Traditional CSDF notation

only denotes the length of the input data at each buffer, not the type of

the data. In this work, instead of just being labelled with the phase vector

P, the input and output Ports are labelled P : T, where T is the type

information.

Chapter 3. Methods 18

3.1.3 Optimization and Analysis

The CSDF intermediate representation presented in this work has two

primary purposes; program optimization and analysis. The compilation

procedure is tailored to optimize for this, by allowing for different opti-

mizations to occur at multiple levels. They may occur at the initial stage

to the parsed Lift code, during CSDF generation, or after. Parallelism is

a particular focus. This means that Lift primitives are given CSDF repre-

sentations that should allow for as much parallelism as possible.

The Kiter analysis tool requires the CSDF to be rendered into a gicen

XML format, with buffer and timing information. The code representa-

tion and class definitions (a sample is given in Figure 3.1) were tailored

to make this simple.

3.2 CSDF Construction

3.2.1 Parser

Any compiler requires a parser, to turn a text file into a workable Ab-

stract Syntax Tree (AST). The Lift project already includes a parser that

produces a parse tree, but we found it an imperfect match for this project.

The parse tree introduced a lot more complexity than a normal AST, in-

cluding a lot of additional syntactic structure, while lacking a lot of infor-

mation that was necessary for generating accurate CSDFs. Thus the first

component of this work is a purpose-built lexer and parser1 to produce a

1In retrospect, it would have been a wiser decision to make use of an automatic Lexer
and Parser Generator, like the ones found in the catalog of compiler construction tools.
Making one from scratch was a novice mistake, which resulted in a comparatively brittle
lexer.

https://github.com/bbodin/kiter

Chapter 3. Methods 19

A =>
reduce(add, 0) ◦ map(abs) $ A

A. Dot program included in the Lift project.

B. Lift parse tree representation.

C. Our AST representation.

FIGURE 3.2: Different representations of the dot program.

bespoke AST. Figure 3.2 shows the difference between our AST and the

Lift parse tree.

This AST is an intermediate representation to transform the Lift pro-

gram from a string into a form that can easily be manipulated into a CSDF

graph. While the parser was additional work, the resultant AST is a much

cleaner stepping stone, intended to be easily interoperable with a CSDF

representation. Where possible, the AST Nodes use the same classes as the

CSDF graph Nodes, and the graph uses a similar structure, with a layer

Chapter 3. Methods 20

of abstraction where there is expected to be many CSDF representations.

Higher order functions, like Map and Reduce, are represented simply in

the AST as a single Node. These Nodes then hold the AST of their input

functions as a field, as illustrated in Figure 3.2 C. This maintains the prin-

ciple of modular design discussed earlier.

Other than that, the AST structure naturally echoes a simplified CSDF

structure. This is largely due to the reasons discussed in chapter 2 about

how CSDFs are a good model for the Lift high level language. However,

the parser was also tailored to amplify these similarities. The end result

is that the AST can usually be taken to be a very, very simplified CSDF.

3.2.2 Type Inference

Type inference is performed immediately on the AST. This had initially

been left until later in the process, but type information proved important

enough to be made available as early as possible. The AST stage is also

where a Lift program is most predictable, making it easier to perform

type inference.

Lift’s deterministic nature makes this step significantly earlier, since

each Node transforms the input data in a predictable fashion. Lift pro-

grams also provide the input data type in the definition of the main func-

tion. These can then be cascaded down the linked Nodes, with the cascade

only continuing once all input data types haves been inferred.

The one complication is user-defined OpenCL functions. The out-

put type of these is not always known, which is problematic. Future

Chapter 3. Methods 21

work could look into performing type inference on them, where possi-

ble. However, even without it, some type information can be inferred di-

rectly from the available Lift information. For instance, if a user-defined

function feeds into a Join, then the user-defined functions input type can

be inferred to be an Array of Arrays of unknown elements (but the same

length). If the Join funnels into a Reduce with ’add’ as the reduction

function, the unknown element must be either an Int or a Float. Float is

generally assumed since it’s a working supertype. This allows for some

type information to be inferred in otherwise challenging places. Unfor-

tunately, this is still incomplete. If the user-defined function output is not

operated on again, no further information can be gained. Further, while

data type information may be inferred, data length cannot be.

At this stage, data type information is stored in the Nodes. This means

that their arrangement can be more easily manipulated. However, this in-

formation is actually particularly relevant for the Channels between the

Nodes. This is because the data type (and length) information is necessary

for calculating the required buffer size for each Channel. Buffer informa-

tion is important for analyzing CSDFs and absolutely vital for compiling

FPGA code.

3.2.3 CSDF Generation

Once the AST has been formed, CSDF graphs can be generated from it.

This mainly involves replacing each Node in the AST with an appropriate

CSDF representation. This is particularly complicated for higher order

functions. Since the initial AST was largely structured as a CSDF, replac-

ing each Node in a modular fashion is most of the work, but not all.

Chapter 3. Methods 22

Higher order functions

As mentioned earlier, each higher order function is represented as a sin-

gle Node in the AST, with the input function as an attribute of that Node.

In order to generate the CSDF, the first step is to generate a CSDF sub-

graph from that input function. This is then subbed into a more detailed

CSDF representation of the higher order function to create a concrete sub-

graph. Because the components are modular, the initial Node can be di-

rectly swapped out for this subgraph. For greater clarity, an example is

given in Figure 3.3.

Parameters

One of the complications with transforming an AST into a CSDF graph is

ensuring the Param Nodes representing the inputs are linked correctly to

every use. The AST is multi-level, with Params from higher levels being

used at ones below. For instance, one parameter may be used as input

for a Zip function on the top level, but also within the input function

of a Map. These are separate things in the AST, especially as the input

function AST is distinct from the top-level one. However, in the CSDF,

both of these occurrences must be fed from the same Param Node. This is

accomplished with good labelling in our AST.

Final touches

Some extra information needs to be derived for the CSDF to be complete.

Notably, the Channels between Nodes require work. Data type and length

information is gathered from the input Node. Information about data

rates and phases is usually derived when the Nodes are being swapped

Chapter 3. Methods 23

FIGURE 3.3: How a CSDF representation of the Map func-
tion is generated from the AST.

Chapter 3. Methods 24

out. Each Node object comes with certain vital knowledge, like execution

time.

Finally, this can be used to generate an XML description of the CSDF

graph, which can be easily analyzed.

3.3 Optimizations

As previously discussed, we are generating CSDFs because they are a

good vehicle for optimization of Lift code. By this we mean that it is

possible to create several different CSDFs all equivalent to the same Lift

program. Some of the CSDF representations will perform better than

others.

There are two primary forms of optimizations. The first is rewrite

rules from the Lift project. The second is CSDF-specific. These will be

further elaborated on in chapter 4.

To test optimizations, multiple CSDFs may be generated using differ-

ent methods. This is also helpful in practice, to test whether different

CSDFs will work best given certain hardware constraints. This is another

place where the focus on modularity comes in useful. Some optimiza-

tions can be expressed as different designs of the CSDF representation

of a Lift primitive. As described earlier, these can be easily swapped in

and out of a CSDF graph by maintaining the same input/output Port

interface.

25

Chapter 4

Results

The first goal of this work was to successfully automate the generation of

CSDF graphs from Lift high level code. The secondary goal was to con-

sider and implement potential optimizations, and analyze which were

most effective. The results are below.

4.1 Sample

The Lift framework provides a selection of 25 prototypical high level pro-

grams for testing. These are primarily fairly simple programs, covering

archetypal algorithms such as matrix multiplication and k-means cluster-

ing.

This paper contributes four more programs to this suite. These in-

clude one for calculating a dot product and another for adding scalars to

an array.

Chapter 4. Results 26

FIGURE 4.1: Percentage of programs from which CSDF rep-
resentations were successfully generated.

4.2 Coverage

The CSDF generator has a 93% success rate on the sample programs. This

unreliability is caused by the user-defined OpenCL functions. Of the pro-

grams which did not include user-defined OpenCL functions, we had a

100% success rate.

4.2.1 Impossibilities

As mentioned in subsection 3.2.2, the output of user-defined functions is

not as well-defined as for Lift primitives. In particular, even if the type

of the output can be inferred to be an array, the array length remains un-

known. This is problematic because knowledge of array length is often

necessary for generating CSDF representations other functions, in partic-

ular Reduce and Join.

This means that a CSDF cannot be generated for a program where

the input data for a Reduce operation has passed through a user-defined

Chapter 4. Results 27

OpenCL function. An accurate Reduce CSDF subgraph cannot be pro-

duced without the missing data length information. Two of the sample

programs featured this structure, the k-means clustering and molecular

dynamics algorithms.

A CSDF generator for OpenCL would be necessary to overcome this

issue, but is outside the scope of this work.

4.2.2 Future Improvements

This makes an OpenCL CSDF generator a clear next step. Unfortunately,

it would be far more difficult to produce a similar CSDF generator for

OpenCL due to the vast difference in complexity. A possible workaround

would be to request that the programmer provide the necessary informa-

tion when they define the function. However, this would break the in-

teroperability between FPGAs and other hardware platforms for the Lift

HLL. It is worth considering.

4.3 Analysis

As previously mentioned, we use Kiter to analyze the CSDF graphs (Bodin,

Munier-Kordon, and Dinechin, 2016). This tool formulates the optimal

schedule for executing each CSDF graph. It then returns the minimum

period, or the lower bound for program execution using a given CSDF

formulation.

https://github.com/bbodin/kiter

Chapter 4. Results 28

4.3.1 Inaccuracies

In order to calculate this, Kiter requires the execution time for each node.

For each Lift primitive this can be derived once and expected to remain

constant, although theoretical values are used in this study. However,

user-defined functions once more raise an issue, since they are typically

unique with unknown execution times.

The current way to handle this is to request the execution time of all

user-defined functions when generating the CSDF. For the most accurate

analytics and optimizations, the user-defined function should be tested

on an FPGA. However, testing revealed that the execution time of user-

defined functions had very little impact on the optimization provided by

different transformations.

4.3.2 Default CSDF

The first method for generating CSDF representations of Lift graphs is the

simplest. It comprises the default (non-parallel) Map shown in Figure 3.3

and Figure 4.4, as well as the recursive Reduce shown in Figure 4.10. We

refer to this as the default or naive method, and it forms the basis for

comparison to evaluate speed-ups of other optimizations.

4.4 Rewrite Rule Optimizations

Not all of the classical Lift rewrite rules were applicable in this case.

Around 75% were either specific to OpenCL threading, or made use of

low-level OpenCL primitives (Steuwer et al., 2015). However, there were

a handful of useful algorithmic rewrite rules.

Chapter 4. Results 29

A, I =>
join() ◦ split(I)
◦ map(x => mult(x,

10))
$ A

A) Single occurrence

MN, I =>
map(x =>

join() ◦ split(I)
$ A)

$ MN

B) Multiple occurrence

FIGURE 4.2: Example functions using cancellation rules

4.4.1 Join/Split Cancellation Rules

join ◦ split I −→ id (4.1)

splitA,J I ◦ joinA,I,J −→ id (4.2)

These cancellation rules state that the operation of splitting an array

into I pieces and then joining them together again is equivalent to doing

nothing at all, as is the converse. This makes intuitive sense.

These rewrite rules were a successful, if minor, optimization. This

is not a common structure, so made no impact in most cases. Where

it did, there was a small but reliable improvement. The cancellation

rule removes two CSDF nodes, Join and Split, which in this model are

constant-time functions, resulting in a constant-time improvement for ev-

ery occurence of this pattern in the CSDF. This is a minor improvement if

the pattern only occurs on the top level as in program A from Figure 4.2,

but can have a much greater impact if it occurs within a Map or Reduce

subfunction, as in program B.

Overall, this was a positive optimization with no drawbacks, and is

used in the default (or naive) method of generation.

Chapter 4. Results 30

(vector, alpha) =>
Map(fun(x => mult(x, alpha)))
$ vector

FIGURE 4.3: The Lift HLL asum program.

4.4.2 Reorder Rules

reorder ◦ MapM −→ MapM ◦ reorder (4.3)

MapM ◦ reorder −→ reorder ◦ MapM (4.4)

The reorder rules clarify that, if order of an array doesn’t matter at

one side of a Map, it doesn’t matter at the other side either. These rules

were somewhat unhelpful in this context, as it became clear that reorder-

ing data, randomly or otherwise, would require interrupting or chang-

ing dataflow channels in the CSDF in a way that would cost more than it

saved. Instead, the Reorder primitive was simply dropped in the default

mode.

4.4.3 Split-Join Rule: Parallel Map

mapA,B,I×J M −→ joinB,I,J ◦mapA,B,I×J M ◦ splitA,I×J I (4.5)

The split-join rule essentially states that a Map can be done in parallel.

It can be broken into multiple segments using Split, on which the map-

ping function is performed in parallel, which are then combined back

into the original array with Join. Figure 4.4 shows how this CSDF repre-

sentation differs from the default.

Chapter 4. Results 31

FIGURE 4.4: Illustration of different CSDF representations
of the scalar-vector addition program.

FIGURE 4.5: Time taken to generate CSDF for scalar-vector
addition, parallel implementation of Map compared to the

default.

Chapter 4. Results 32

FIGURE 4.6: MMNN CSDF execution time with Map imple-
mented in parallel, relative to the naive execution.

Compilation times are a lot longer for this parallel Map. This is be-

cause the mapping subgraph needs to be duplicated for each segment

running in parallel, as shown in Figure 4.4. This needs to be a deep copy,

which is an extremely expensive operation given that a subgraph is an

extremely complicated, multilayered and heavy object. On top of that,

almost everything needs to be renamed to prevent id collisions. Python

is a particularly poor choice for speeding this up.

Using the default implementation of Map, the CSDF generation time

remains constant. With the parallel method, it increases linearly with the

length of the input array. Figure 4.5 illustrates how this effect quickly be-

comes quite noticeable for asum, the scalar-vector addition function pro-

vided in the Lift codebase. This takes even longer for more complicated

programs, like matrix multiplication.

Chapter 4. Results 33

A) Speed improvement for Matrix
Multiplication (15x15 matrix)

dependent on the number of cores
available

B) CSDF generation time for
Matrix Multiplication (15x15

matrix) dependent on the number
of cores available

FIGURE 4.7: Effect of core restriction on parallel Map

However, the long compilation times pays off with major speed im-

provements. Figure 4.6 shows the execution time of a CSDF with Map

implemented in parallel as a percentage of the execution time for the

naive CSDF, plotted against the array length of the input. The given ap-

plications are all heavily data-parallel, so the input array data is a ser-

viceable proxy for the parallelizable portion of the program according to

Amdahl’s Law (Amdahl, 1967). Implementing a parallel Map can very

easily result in speed-ups of more than 20x.

These stats are, admittedly, assuming an infinite number of nodes can

be run at the same time. The actual number of nodes that can execute

simultaneously will be dependent both on the size of the FPGA and the

type of nodes, since each node type takes up a different number of logic

blocks. Using the simplifying assumption that one process can run in

Chapter 4. Results 34

FIGURE 4.8: The Map Fusion Rule CSDF equivalence.

one core at a time, Figure 4.7 A shows the impact of restricting the num-

ber of cores on the speed improvement from parallel mapping for ma-

trix multiplication of a 15 by 15 matrix. 10x speed improvement is seen

with just four cores. This does improve as more cores are added, but at

a markedly lesser rate. Figure 4.7 B shows that fewer cores also result in

a quicker CSDF generation time. Generating a CSDF using parallel map-

ping across four cores takes 48 milliseconds. For eight cores, it takes 276

milliseconds.

4.5 CSDF-specific improvements

4.5.1 To Array Or Not To Array

Arrays and their elements are an essential aspect of Lift, as is the tran-

sition between them. Functional operations like Map take in an array as

input, but then operate on each array element individually. In the CSDF

representation, this is handled by Dearray and Rearray nodes. Dearray

takes in an array as input, and outputs each of its elements individually.

Rearray does the opposite. Thus the Map representation pipes the input

Chapter 4. Results 35

FIGURE 4.9: Speed improvement caused by de-
arrayification applied to the parallel-map and naive

versions of the dot function.

array through a Dearray node, pipes each element through the subfunc-

tion CSDF, then finally Rearrays them. Reduce also has this structure,

with the reduction function being bookended by Dearray and Rearray

nodes.

It is also possible to make the design choice of having Zip follow the

same pattern. In the default implementation, Zip simply takes in two

arrays, and outputs and array. Alternatively, the inputs can be dearray-

ified so that each element pair is Zipped together independently before

being rearray-ified at the end. In isolation the default Zip is the better

choice, since Dearray and Rearray would just be unnecessary overhead.

Chapter 4. Results 36

Map M ◦ Map N −→ map(N ◦M) (4.6)

However, sometimes Dearray and Rearray nodes may cancel each

other out. Lift already has a version of this called the Map Fusion Rule

(Equation 4.6), as seen in the CSDF equivalence from Figure 4.8. This

concept is extensible. Rearraying an array only to immediately dearray it

is unnecessary.

rearray ◦ dearray A −→ id (4.7)

dearray ◦ rearray A −→ id (4.8)

As Figure 4.9 shows, this optimization can give up to a 10% improve-

ment. However, the Dearray and Rearray nodes are typically outside

of Map or Reduce subfunctions and thus not data-parallel, meaning that

the proportional benefit quickly decreases with data size. The absolute

decrease in execution time, however, remains constant.

4.5.2 Reduce

So far, the CSDFs have been formed by replacing the abstract represen-

tation in the AST with a more detailed recursive design. This work also

implements a parallel version. Figure 4.10 shows these different designs.

This parallel Reduce is a very successful optimization, with a 5.2x

speed-up on four cores for the dot product. This version took 3x longer

to compile than the fully recursive version.

Chapter 4. Results 37

FIGURE 4.10: Different ways Reduce can be represented as
a CSDF subgraph.

FIGURE 4.11: Speed improvement to dot function with dif-
ferent levels of parallelization.

Chapter 4. Results 38

For the dot function, using a parallel implementation of Reduce pro-

vides twice the speed-up as a parallel Map, although this does depend on

the exact formulation of the program. Implementing both primitives in

a parallel manner can theoretically give over 100x speed-up with infinite

computing resources. Limiting it to four cores, we found the dot product

was limited to a 5.5x speed-up.

39

Chapter 5

Conclusion

This work set out to build the first part of a compiler for FPGAs from

Lift, and in doing so demonstrate that CSDFs are a good intermediate

representation for optimization. We have successfully produced a work-

ing CSDF generator, and engineered several conclusive improvements to

the naive design.

It is unsurprising that parallelization produces the strongest optimiza-

tions, although the magnitude of the improvement can be greater than

we expected. This is partly due to the way the Lift HLL is structured

to encourage highly data-parallel code. Speed improvement of 10x was

possible even with only 4 cores. However, these are not the only opti-

mizations we have shown. The Lift cancellation rule also causes minor

improvements, as does this paper’s proposal of a more de-arrayified Zip

combined with more streamlined array mechanics.

Overall, our initial assumption that CSDFs are a good intermediate

representation for Lift code compilation has held up, and we have suc-

cessfully used them for early analysis and optimization.

Chapter 5. Conclusion 40

5.1 Artifacts

This work has contributed an additional compiler for the Lift high level

language, which is readily available on Github. Producing this also in-

volved working with the Lift project.

5.1.1 Lift Project

The Lift artifact is available on GitHub at github.com/lift-project/lift.

This represents the work done by the Lift Project, excluding this compiler.

We have helped make this more available by contributing a public docker

container at hub.docker.com/repository/docker/hebehh/lift. Addition-

ally, we have augmented the Lift artifact with a fork that will run on Mac

(tested on Mojave and Catalina), and with a higher Java version (tested

up to 11). This is available at github.com/HebeHH/lift.

5.1.2 CSDF Generator

The artifact described in this work, the CSDF compiler for the Lift high

level language, is available on my GitHub at github.com/HebeHH/lift-

to-csdf.

41

Bibliography

“Advanced Model-Based FPGA Accelerator Design” (2017). In: FPGA-

based Implementation of Signal Processing Systems. John Wiley Sons, Ltd.

Chap. 10, pp. 200–224. ISBN: 9781119079231. DOI: 10.1002/9781119079231.

ch10. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/

9781119079231.ch10. URL: https://onlinelibrary.wiley.com/doi/

abs/10.1002/9781119079231.ch10.

Amdahl, Gene M (1967). “Validity of the single processor approach to

achieving large scale computing capabilities”. In: Proceedings of the

April 18-20, 1967, spring joint computer conference. ACM, pp. 483–485.

Asanovic, Krste et al. (2009). “A view of the parallel computing land-

scape”. In: Communications of the ACM 52.10, pp. 56–67.

Asanović, Krste et al. (2006). The Landscape of Parallel Computing Research:

A View from Berkeley. Tech. rep. UCB/EECS-2006-183. EECS Depart-

ment, University of California, Berkeley. URL: http://www2.eecs.

berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html.

Aubry, Pascal et al. (2013). “Extended cyclostatic dataflow program com-

pilation and execution for an integrated manycore processor”. In: Pro-

cedia Computer Science 18, pp. 1624–1633.

Bachrach, Jonathan et al. (2012). “Chisel: constructing hardware in a scala

embedded language”. In: DAC Design Automation Conference 2012. IEEE,

pp. 1212–1221.

https://doi.org/10.1002/9781119079231.ch10
https://doi.org/10.1002/9781119079231.ch10
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119079231.ch10
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119079231.ch10
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119079231.ch10
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119079231.ch10
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

Bibliography 42

Bodin, Bruno, Alix Munier-Kordon, and Benoît Dupont de Dinechin (2013).

“Periodic schedules for cyclo-static dataflow”. In: The 11th IEEE Sym-

posium on Embedded Systems for Real-time Multimedia. IEEE, pp. 105–

114.

— (2016). “Optimal and fast throughput evaluation of CSDF”. In: Pro-

ceedings of the 53rd Annual Design Automation Conference. ACM, p. 160.

Chandrakasan, Anantha P, Samuel Sheng, and Robert W Brodersen (1992).

“Low-power CMOS digital design”. In: IEICE Transactions on Electron-

ics 75.4, pp. 371–382.

Darlington, John et al. (1993). “Parallel programming using skeleton func-

tions”. In: International Conference on Parallel Architectures and Languages

Europe. Springer, pp. 146–160.

Fine Licht, Johannes de, Michaela Blott, and Torsten Hoefler (2018). “De-

signing scalable FPGA architectures using high-level synthesis”. In:

ACM SIGPLAN Notices 53.1, pp. 403–404.

Hammond, Kevin (2011). “Why Parallel Functional Programming Mat-

ters: Panel Statement”. In: Reliable Software Technologies - Ada-Europe

2011. Ed. by Alexander Romanovsky and Tullio Vardanega. Berlin,

Heidelberg: Springer Berlin Heidelberg, pp. 201–205. ISBN: 978-3-642-

21338-0.

Khan, Hassan N, David A Hounshell, and Erica RH Fuchs (2018). “Sci-

ence and research policy at the end of Moore’s law”. In: Nature Elec-

tronics 1.1, p. 14.

Mulpuri, Chandra and Scott Hauck (2001). “Runtime and quality trade-

offs in FPGA placement and routing”. In: Proceedings of the 2001 ACM/SIGDA

Bibliography 43

ninth international symposium on Field programmable gate arrays. ACM,

pp. 29–36.

Nane, Razvan et al. (2015). “A survey and evaluation of FPGA high-level

synthesis tools”. In: IEEE Transactions on Computer-Aided Design of In-

tegrated Circuits and Systems 35.10, pp. 1591–1604.

Research, Industry (2019). GLOBAL FIELD PROGRAMMABLE GATE AR-

RAY (FPGA) MARKET RESEARCH REPORT FORECAST TO 2025. In-

dustry Research.

Steuwer, Michel, Toomas Remmelg, and Christophe Dubach (2017). “Lift:

a functional data-parallel IR for high-performance GPU code genera-

tion”. In: 2017 IEEE/ACM International Symposium on Code Generation

and Optimization (CGO). IEEE, pp. 74–85.

Steuwer, Michel et al. (2015). “Generating performance portable code us-

ing rewrite rules: from high-level functional expressions to high-performance

OpenCL code”. In: ACM SIGPLAN Notices 50.9, pp. 205–217.

Stewart, Robert et al. (2017). “Profile guided dataflow transformation for

FPGAs and CPUs”. In: Journal of Signal Processing Systems 87.1, pp. 3–

20.

Vlugt, Steven van der et al. (2019). “Modeling and analysis of FPGA ac-

celerators for real-time streaming video processing in the healthcare

domain”. In: Journal of Signal Processing Systems 91.1, pp. 75–91.

	Abstract
	Introduction
	Motivation
	Parallelism: An attractive difficulty
	In this work

	Context
	World as it stands: Parallel Programming Models
	Parallel Hardware
	Optimization

	Background Information
	Lift: Making parallel programs performance portable
	Structure
	Rewrite Rules

	Cyclo-Static Dataflow Graphs
	Description
	Fit for Model

	Methods
	Design Principles
	Modular Design
	Dataflow
	Optimization and Analysis

	CSDF Construction
	Parser
	Type Inference
	CSDF Generation

	Optimizations

	Results
	Sample
	Coverage
	Impossibilities
	Future Improvements

	Analysis
	Inaccuracies
	Default CSDF

	Rewrite Rule Optimizations
	Join/Split Cancellation Rules
	Reorder Rules
	Split-Join Rule: Parallel Map

	CSDF-specific improvements
	To Array Or Not To Array
	Reduce

	Conclusion
	Artifacts
	Lift Project
	CSDF Generator

	Bibliography

